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The application of statistical energy analysis to vibro-acoustic systems of complex
geometry has been made practicable by the introduction of the concept of equivalent
mass/equivalent volume. Although previous research at the ISVR has shown that these
parameters can be directly measured, it has recently been found that the published formulae
for carrying out this calculation are not su$ciently accurate. This is because it has been
previously incorrectly assumed that the measurement on the subsystem of interest is
una!ected by the presence of other attached subsystems. The paper derives the correct
expressions for equivalent mass/equivalent volume for the general case of N-connected
subsystems. By utilizing these derived expressions, the paper then proceeds to show that the
coupling loss factors can be obtained directly in terms of the measured input power and
vibration velocity/sound pressure. The paper concludes by showing that the power balance
equations can, by utilizing the above expressions, be framed in terms of the subsystem
velocities/sound pressures rather than in terms of subsystem energies.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Statistical energy analysis (SEA) is concerned with the steady state balance between input,
dissipated and transferred powers in a vibro-acoustic system. When it was "rst established,
the primary objective was to predict acoustic and/or structural energy levels in discrete
parts (termed subsystems) of a system for known input powers. More recently, a parallel
body of research has also been developed whereby an SEA model is set-up from
measurements made on existing hardware. The purpose of this latter development is to
diagnose noise/vibration problems and to explore various solution strategies by
extrapolating the model parameters.
Since all the relevant parameters are time, frequency band and spatially averaged, the

technique is not only very robust but also does not require a detailed description of the
vibro-acoustic system. This is because its functionality depends on global rather than
detailed properties. SEA appears, therefore, to be a very attractive technique for the analysis
of complex structures (e.g., a car), particularly at high frequencies, where there are problems
in applying the "nite element method. Once the system under investigation has
been notionally subdivided into subsystems, the setting-up of the power balance
equations (which relate input powers to subsystem energies) is a relatively straightforward
procedure.
Unfortunately, this underlying simplicity conceals a hidden problem. Whilst it is not

di$cult to predict subsystem energy levels, the conversion of these to velocities or acoustic
pressures is not usually a straightforward matter. If the system considered is uniform and of
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regular geometrical shape, then the conversion factor is simply the subsystem mass or
volume. However, for most actual structures and acoustic cavities, the use of such
a conversion factor will generally introduce signi"cant errors. For experimentally based
models, there is a similar di$culty in converting vibration/sound pressure measurements to
energy levels. This problem has been partly overcome by using the equivalent
mass/equivalent volume, which can be measured experimentally, although it has been found
that even this development does not entirely eliminate the errors.
Recent research at the ISVR has found that in many cases these errors have been due to

the incorrect formulation of equivalent mass/equivalent volume and this paper shows the
derivation of the corrected theory. However, the paper also demonstrates that the coupling
loss factors can be directly obtained from measured quantities, without involving the
equivalent mass and/or equivalent volume, thus signi"cantly improving the convenience
and accuracy of an experimentally based SEA model.

2. BACKGROUND THEORY

For a uniform beam or plate, the frequency band and time-averaged total energy of
vibration can be expressed as

E
�����

"M�<��, (1)

where M is the the total mass of the component, and �<�� the frequency band, time and
space-averaged square of the velocity.
Similarly, the frequency band and time-averaged total energy of a regularly shaped

acoustic volume is

E
�����

"

<

�c�
�p�� , (2)

where < is the volume of the acoustic space, �p�� the frequency band, time
and space-averaged square of the pressure, � the density of air, and c the speed of sound
in air.
However, for structures or volumes having irregular geometry, it has been found [1] that

the energies are not proportional to their respective masses or volumes. The reasons for this
are enumerated below for the case of a complex structure, although similar arguments apply
for volumes of complex shape.
Consider a stand-alone subsystem that is being excited in a particular frequency band by

a force whose spectrum is constant with time. The input power P
��
to the subsystem (which

equals the power absorbed by the subsystem) is given by

P
��
"�E

�����
. �

�
"�M

��
�<���

�
, (3)

where � is the band centre frequency (rad/s), �
�
the band-averaged internal loss factor, and

M
��
the band-averaged equivalent mass.

Equation (3) is, in fact, a de"nition of equivalent mass which, by rearranging, gives

M
��

"

P
��

��
�
�<��

. (4)
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It should be noted that P
��
and �<�� are both either frequency band totals or frequency

band averages.

3. REASONS FOR DIFFERENCE BETWEEN M AND M
��

3.1. INSUFFICIENT SAMPLES FOR �<��

In order to obtain an accurate value for the mean-square velocity for a subsystem, it is
necessary to take velocity samples at a su$cient number of locations. If this is not done, the
measured value of �<�� will be subject to random variations. It can be seen from equation
(4) that this will cause corresponding variations in M

��
.

On many structures (e.g., car door or engine cylinder block), there are parts where access
for velocity sampling is not practicable. It can be seen from equation (3) that when the
vibration level of such hidden components is high, increased power will be absorbed by the
subsystem. However, although it is generally found that on most practical structures
resonances of internal parts are detected by small response peaks on the accessible outside
surfaces (due to the coupling that results from the complex three-dimensional shapes), the
increase in measured �<�� does not adequately re#ect the increase in the absorbed power.
Thus, when this occurs, M

��
will have a high value.

Another factor related to this sampling error is due to the fact that most structures are not
uniform in thickness. Hence, the velocity measurements should re#ect this by being
distributed such that areas of equal mass are equally sampled. Since this is usually
impractical, a further error results [2].

3.2. ERRORS IN MEASURING �
�

For a single, stand-alone subsystem, the measurement ofM
��
is essentially based on the

dual de"nition of the internal loss factor, �
�
, viz.

�
�
"

P
	�



�E
�����

"

P
	�



�M
��
�<��

"

13)82

�¹
��

, (5)

where P
	�


is the power dissipated by the subsystem, and ¹

��
the frequency band and

space-averaged reverberation time (i.e., the time taken by the energy response to decay by
60 dB) of the subsystem.
Rearranging the last two expressions in equation (5) gives

M
��

"

P
	�



¹
��

13)82�<��
. (6)

If �<��/P
	�


is de"ned as v, the normalized subsystem mean-square velocity, then the

expression for the equivalent mass (in terms of the internal loss factor) is also equivalent to

M
��

"

1

��
�
v
. (7)

It is the measurement of ¹
��
which can cause some problems. This is particularly the case

when there are two dominant modes in the band which beat together. Furthermore, since it
is the initial decay rate which is required, measurement is often di$cult because the
waveform is obscured by the initial transient behaviour of the subsystem (due to impulsive
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excitation, or when steady state excitation is switched o!). Care must also be exercised to
ensure that the decay is controlled by the damping of the subsystem and not by the damping
of the "lter. These factors tend to produce an overestimate of ¹

��
and hence an

overestimate of M
��
.

It is worth mentioning at this stage that, in practice, many ¹
��
measurement errors can

be reduced to a minimum by using octave band "lters and then interpolating the results to
obtain one-third octave values. This can be justi"ed on the basis that, although the loss
factors of individual modes in a band often vary signi"cantly, this is not generally the case
with the band averages. Hence, the resulting loss factor spectrum is usually quite similar to
a straight line when plotted on a log}log basis. Another reason for using octave rather than
one-third octave "lters is that it tends to avoid the common problem that some
low-frequency one-third octave bands do not contain any modes.

3.3. SPARCE MODAL DENSITY

The fact that the total energy of each subsystem in a frequency band is calculated from
measurements of velocity (or acoustic pressure) implies that the totals of the maximum
kinetic and maximum strain energies are equal. However, this is often not the case,
particularly when the modal density is low. Here, the equivalent mass acts as a compensator
for this discrepancy [3].

3.4. EFFECT OF OTHER CONNECTED SUBSYSTEMS

Another problem in the evaluation ofM
��
stems from the fact that the e!ect of coupling

to other subsystems is not taken into account. It had previously been assumed that other
connected subsystems would not a!ect the prediction of the equivalent mass since the
resultant increase in input power would be balanced by a corresponding decrease in the
value of ¹

��
. It has recently been found that this is not the case and the following section

shows how the e!ect of connected subsystems on equivalent mass can be taken into
account.

4. REVISED FORMULATION FOR M
��

It should be noted at this point that in all further analysis it will be implicitly assumed
that energy, velocity and power values are averaged over space and time for a given
frequency band. Therefore, in the interests of simplicity of notation, all bars above these
quantities will no longer be shown.
If the response of two coupled subsystems i and j within a given frequency band is

considered, then by de"nition

E
��
"M

���
�<�

��
� , (8)

whereE
��
is the energy level averaged over space and time of subsystem iwhen subsystem j is

excited, M
���
the equivalent mass of subsystem i, and �<�

��
� the measured vibration level

averaged over space and time of subsystem i when subsystem j is excited.
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The power balance equation for a structure comprisingN subsystems may be written as
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where �
��
"�

�
is the internal loss factor.

The internal loss factors can also be expressed independently [4] as
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The time and space average of the vibration level of subsystem iwhen subsystem j is excited,
normalized per unit power injected into subsystem j, is de"ned as

v
��
"

�<�
��
�

P
�

. (11)

Expressing the energies in equation (10) in terms of the equivalent masses and the averaged
vibration levels normalized per unit power leads to
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which may be re-written as
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Hence,
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In the case of two coupled subsystems, equation (15) reduces to

M
���

"

(v
��
!v

��
)

��
�
(v

��
v
��
!v

��
v
��
)

(16)

whereas equation (7) gives

M
���

"

1

��
�
v
��

. (17)

Note that if the terms in equation (16) which are preceded by a minus sign are small
compared with those which are preceded by a plus sign, the two expressions above are
approximately equivalent. Physically, this occurs when the normalized vibration levels of
a directly excited subsystem are much greater than those of a connected subsystem. This is
especially true when the two subsystems are weakly coupled.
It can be seen that as the number of subsystems is increased, the expressions

for the equivalent masses obtained from equation (15) become increasingly complicated
due to the inversion of a larger matrix. It might be assumed that since the valid
application of SEA relies on weak coupling between subsystems, any discrepancies
in the equivalent masses resulting from the use of equation (17) should be minimal,
which does not signi"cantly a!ect the results. However, it has been noted that, in
practice, even in situations where the normalized vibration levels of directly
excited subsystems are much greater than those of the indirectly excited subsystems, the
errors can actually be very signi"cant. This is especially true as the number of subsystems
increases.

5. ELIMINATION OF THE EQUIVALENT MASSES IN THE EXPRESSIONS FOR THE
COUPLING LOSS FACTORS

In reference [5], expressions for the coupling loss factors in terms of only the normalized
vibration levels and internal loss factors have been obtained in the case of two and three
subsystems. The following analysis will show how these results can be generalized for
N subsystems.
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It has been shown [4] that, for the ith subsystem of a structure comprisingN subsystems
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Expressing the energies in terms of the equivalent masses and the normalized vibration
levels gives
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which may be re-written as

[A]

�
��

0 2 0

0 � �

� �
�

� 0

0 2 0 �
�� O�

�
M

���
�

M
��
�

M
���
�
O�

"

1

�v
�� �
1

�

1

�

1 � , (20)
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It will be noted that although equation (15) expresses all theM
��
's from 1 toN, equation (20)

does not include the ith term. Therefore, before the M
��
's can be eliminated, the terms in

M
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must be removed from equation (15). This is achieved as follows: "rstly equation (14)

is re-written as
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In order to eliminateM
���
, the rth equation is multiplied by v

��
and the ith equation by v

�
,

and then the rth equation is subtracted from the ith one.
By carrying out this procedure, the following equation is obtained:
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Substituting equation (23) into equation (20) to eliminate the M
��
's gives
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Equation (25) is also equivalent to

[A]

C(1) 0 2 0

0 C(2) �

� �

0

0 2 0 C(N!1) �
�
��

�
�
�
�
�

�

�

�
��

�
�

�
O�

"

1

v
�� �
1

�

1

�

1 � , (27)

where C(r) corresponds to the element in the rth row of �C�.
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Rearranging equation (27) gives
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6. VERIFICATION

Although it is not practicable to verify the preceding theory independently, a comparison
can be made with the previously published work. In reference [5], expressions for the ratios
of the coupling loss factors to the internal loss factors in terms of the averaged vibration
levels have been obtained in the cases of two- and three-coupled subsystems. It will now be
shown that the same expressions may be obtained using equation (28).

6.2. TWO SUBSYSTEM CASE (N"2)

For i "2, equation (24) may be re-written as
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These results are the same as those obtained in reference [5].

6.2. THREE SUBSYSTEM CASE (N"3)

Assume, for example, that i"2. The following expressions are obtained for [A] and [B]:
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Inverting both these matrices gives
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or
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Substituting into equation (28) gives

�
�
��
�
�

�
��
�
�
�"v

��
v
��

1

D
�

0

0
1

D
�

�
v
��
v
��

!

v
��
v
��
� �!

v
��
v
��

#

v
��
v
��
�

�!
v
��
v
��

#

v
��
v
��
� �

v
��
v
��

!

v
��

v
��
�

�
1

1�. (37)



108 P. GED LAT AND N. LALOR
Hence,

�
�
��
�
�

�
��
�
�
�"�

(v
��
v
��

!v
��
v
��
)

(v
��
v
��

!v
��
v
��

!v
��
v
��

#v
��
v
��

!v
��
v
��

#v
��
v
��
)

(v
��
v
��

!v
��
v
��
)

(v
��
v
��

!v
��
v
��

!v
��
v
��

#v
��
v
��

!v
��
v
��

#v
��
v
��
) � . (38)

For i"1 and 3, similar expressions may be obtained. Again, the same results may be found
in reference [5]. In addition, Bharj et al. [6] have experimentally veri"ed equations (30), (31)
and (38) for two and three subsystem models. They found that the coupling loss factor
values calculated using these equations were indistinguishable from those obtained by the
normal method.

7. ELIMINATION OF THE EQUIVALENT MASS IN THE BACK CALCULATION OF
SUBSYSTEM VELOCITY

A very useful check on the accumulated error due to the various approximations used in
estimating the SEA parameters is to compare the back calculation of a subsystem velocity
with the directly measured transfer function. Of course, this is only of value when the
subsystem in question is remote from the excited subsystem*otherwise exact agreement
will result because the measured transfer function has already been used in the parameter
computation. This checking procedure has been described in detail by Hermans et al. [7].
If power P

�
is simultaneously input into each subsystem i, then from equation (9)
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or
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P
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� . (40)

Expressing the resultant subsystem energies in terms of their velocities �<�
�
� gives
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�
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It can also be easily shown [8] that, by injecting power sequentially into each subsystem in
turn
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� � �
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��

2 2 E
��
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1
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Equation (42) can be rearranged to give
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or
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Eliminating [L]�� by substituting equation (44) into equation (41) gives
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or
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�
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�
�
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�
� . (46)

Equation (46) is essentially the same as the power balance equation (9) but without the
equivalent masses. It will be recalled that the coupling loss factors can also be expressed in
terms of the normalized mean-square velocities v

��
and the internal loss factors, using

equation (28).
Equations (45) and (46) are particularly interesting because they show that the energy of

any subsystem is the linear sum of the energies due to each input acting on its own, as has
previously been reported by Hermans [9]. It should also be noted that since equation (46)
does not contain any coupling loss factors, it is always valid, regardless of the validity of the
SEA model. The equation is, in fact, a space and frequency band-averaged version of the
well-known transfer function matrix equation.
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8. CONCLUDING REMARKS

The paper demonstrates that the expression currently used for the equivalent mass is not
consistent with the power balance equations. A correct expression has been obtained for the
general N subsystem case. This relationship has then been used to derive an expression for
the coupling loss factors solely in terms of measured velocities, internal loss factors and
input powers.
Since the calculation of equivalent mass has been much prone to error, it is to be expected

that its elimination will signi"cantly improve the experimental determination of the
coupling loss factors. The paper also shows that, by using the above-derived relationships,
the power balance equations can be framed solely in terms of directly measured quantities.
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